Estimation in inverse problems and second-generation wavelets

نویسندگان

  • Dominique Picard
  • Gérard Kerkyacharian
چکیده

We consider the problem of recovering a function f when we receive a blurred (by a linear operator) and noisy version: Yε = Kf + εẆ . We will have as guides 2 famous examples of such inverse problems: the deconvolution and the Wicksell problem. The direct problem (K is the identity) isolates the denoising operation. It cannot be solved unless accepting to estimate a smoothed version of f : for instance, if f has an expansion on a basis, this smoothing might correspond to stopping the expansion at some stage m. Then a crucial problem lies in finding an equilibrium for m, considering the fact that for m large, the difference between f and its smoothed version is small, whereas the random effect introduces an error which is increasing withm. In the true inverse problem, in addition to denoising, we have to ‘inverse the operator’K , an operation which not only creates the usual difficulties, but also introduces the necessity to control the additional instability due to the inversion of the random noise. Our purpose here is to emphasize the fact that in such a problem there generally exists a basis which is fully adapted to the problem, where for instance the inversion remains very stable: this is the singular value decomposition basis. On the other hand, the SVD basis might be difficult to determine and to numerically manipulate. It also might not be appropriate for the accurate description of the solution with a small number of parameters. Moreover, in many practical situations the signal provides inhomogeneous regularity, and its local features are especially interesting to recover. In such cases, other bases (in particular, localised bases such as wavelet bases) may be much more appropriate to give a good representation of the object at hand. Our approach here will be to produce estimation procedures keeping the advantages of a localisation properly without loosing the stability and computability of SVD decompositions. We will especially consider two cases. In the first one (which is the case of the deconvolution example) we show that a fairly simple algorithm (WAVE-VD), using an appropriate thresholding technique performed on a standard wavelet system, enables us to estimate the object with rates which are almost optimal up to logarithmic factors for any Lp loss function and on the whole range of Besov spaces. In the second case (which is the case of the Wicksell example where the SVD basis lies in the range of Jacobi polynomials) we prove that a similar algorithm (NEED-VD) can be performed provided one replaces the standard wavelet system by a second generation wavelet-type basis: the needlets. We use here the construction (essentially following the work of Petrushev and co-authors) of a localised frame linked with a prescribed basis (here Jacobi polynomials) using a Littlewood–Paley decomposition combined with a cubature formula. Section 5 describes the direct case (K = I ). It has its own interest and will act as a guide for understanding the ‘true’ inverse models for a reader who is not familiar with nonparametric statistical estimation. It can be read first. Section 1 introduces the general inverse problem and describes the examples of deconvolution and Wicksell’s problem. A review of standard methods is given with a special focus on SVD methods. Section 2 describes the WAVE-VD procedure. Section 3 and 4 give a description of the needlets constructions and the performances of the NEED-VD procedure. Mathematics Subject Classification (2000). 62G07, 62G20, 62C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets

In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra  integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...

متن کامل

Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework

In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...

متن کامل

Inputs and Outputs Estimation in Inverse DEA

The present study addresses the following question: if among a group of decision making units, the decision maker is required to increase inputs and outputs to a particular unit in which the DMU, with respect to other DMUs, maintains or improves its current efficiencylevel, how much should the inputs and outputs of the DMU increase? This question is considered as a problem of inverse data envel...

متن کامل

Minimax Estimation via Wavelets for Indirect Long-Memory Data

In this paper we model linear inverse problems with long-range dependence by a fractional Gaussian noise model and study function estimation based on observations from the model. By using two wavelet-vaguelette decompositions, one for the inverse problem which simultaneously quasi-diagonalizes both the operator and the prior information and one for long-range dependence which decorrelates fract...

متن کامل

Solving Multi-dimensional Evolution Problems with Localized Structures using Second Generation Wavelets

A dynamically adaptive numerical method for solving multi-dimensional evolution problems with localized structures is developed. The method is based on the general class of multi-dimensional second-generation wavelets and is an extension of the second-generation wavelet collocation method of Vasilyev and Bowman to two and higher dimensions and irregular sampling intervals. Wavelet decomposition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006